Python数据科学-技术详解与商业实践(八大案例,配套书籍)完整视频教程

资源下载
下载价格10 人民币
建议您开通vip,可免费下载全部网站课程

养成式数据科学家培养模式,针对入门难、头绪乱、进步缓慢、缺乏业界经验、面试恐惧等问题提供解决方案。

从3个维度展开,技术维度:全面讲解数据分析、数据挖掘和机器学习的核心技术;业务维度,围绕具体的业务生命周期展开技术知识点的讲解;实践维度,列举的全部是商业案例,通过案例为数据科学从业者提供工作模板。

课程目录:
第一讲: 数据科学家的武器库(对应图书第1章)
1、数据科学的基本概念
2、数理统计技术
3、数据挖掘的技术与方法
4、分类模型的评估方法

第二讲:python基础(对应图书第2、3章)
1、Python简介与安装Anaconda
2、Python基础数据类型与表达式
3、Python原生态数据结构
4、Python控制流、函数与模块

第三讲:信用卡客户特征分析-产品客户画像初步(对应图书第4、5章)
1、使用描述性统计进行数据探索
2、制作报表与统计制图
3、数据可视化原则与报告PPT制作
4、讨论题目-化妆品销售数据的可视化分析:内容涉及业务报告的故事构思、对比分析、趋势分析、产品画像、客户画像与可视化

第四讲:二手房价格分析报告(对应图书第6、7章)
1、统计推论——大胆假设与小心求证
2、方差分析与相关分析——影响房价的单因素探索
3、线性回归——影响房价因素的系统性分析
4、业务分析报告的标准模板
5、讨论题目-建立上市公司绩效预测模型:基于企业的历史经营信息预测未来的营收状况。

第五讲:汽车贷款信用评分卡制作(对应图书第6、8章)
2、卡方检验——影响违约的单因素探索
3、逻辑回归——建立违约预测模型
4、数据挖掘报告的标准模板
5、讨论题目-信用评分卡模型:内容涉及变量筛选、WOE转换、建立模型、模型检验(ROC与KS)与评分卡制作

第六讲:电信客户流失预警(对应图书第9、10章)
1、建立决策树——判别流失类型
2、构建神经网络——建立分类型的流失预警模型
3、讨论题目-量化选股模型:基本面与动量选股策略、制作因子指标、建立神经网络预测模型

第七讲:信用卡行为反欺诈模型(对应图书第11、12、16、17章)
1、集成学习在反欺诈模型的适用性
2、反欺诈模型的数据特征与不平衡数据处理
3、甜点:使用抽样调整、组合算法提升宽带营销预测模型的预测能力
4、讨论题目-信用卡行为反欺诈模型:稀疏数据问题、神经网络反欺诈模型的难点、深度随机森林的优势

第八讲:慈善机构精准营销案例(对应图书第13章)
1、特征工程需要解决的问题
2、连续变量压缩技术
3、分类变量压缩技术
4、讨论题目-信用卡客户流失预警模型:CRISP_DM建模流程、数据清洗、变量压缩、模型开发与评估

第九讲:银行客户渠道使用偏好洞察案例(对应图书第14章)
1、客户智能与客户画像
2、客户360视图与标签体系
3、聚类模型与客户细分
4、聚类模型与分类模型的螺旋式发展
5、分类模型算法进阶-凸优化、朴素贝叶斯、SVM、GBDT推导与分类模型评估
6、讨论题目-电信客户消费行为聚类:变量主题相关性分析、信息压缩、分布形式转换与客户分群描述

第十讲:推荐系统设计与银行产品推荐(对应图书第15章)
1、推荐系统设计
2、推荐算法适用性分析
3、购物篮分析与关联规则
4、讨论题目-电信公司产品捆绑销售策略制定:产品互补性分析与购物篮在捆绑销售中的实操

侵权联系与免责声明
1、本站资源所有内容均收集于网络,与本网站立场无关
2、本站所有资源收集于互联网,由用户分享,该帖子作者与老马学社网站不享有任何版权,如有侵权请联系本站删除
3、本站部分内容转载自其它网站,但并不代表本站赞同其观点和对其真实性负责
4、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意
侵权联系邮箱:648765304@qq.com 本文链接:https://laomastudy.cn/1583.html
0

评论0

站点公告

老马学社因各项成本逐渐加大,优质课程资源不断增多,站内总资源价值上亿!!!!!明日将会恢复至原价999,今日只需499开通永久会员。网站始于2020年,稳定运行超过5年,每日更新,全站课程不加密,包含多个类目,总课程价值超过百万,比我们便宜的没有我们全,和我们一样全的没我们便宜,抓紧时间提升自己最重要
没有账号?注册  忘记密码?