┣━002-人工智能全新升级版-小象学院
┣━视频
┣━14.统计学习(1).mp4
┣━02.机器学习的数学基础.mp4
┣━15.统计学习.mp4
┣━19.神经网络.mp4
┣━18.概念学习.mp4
┣━04.机器学习中的数学基础.mp4
┣━12.统计学习.mp4
┣━13.统计学习.mp4
┣━07.经典机器学习模型.mp4
┣━01.机器学习中的数学基础.mp4
┣━03.机器学习中的哲学.mp4
┣━10.核方法.mp4
┣━20.强化学习.mp4
┣━15.统计学习(1).mp4
┣━11.核方法.mp4
┣━09.线性模型.mp4
┣━16.无监督学习.mp4
┣━17.流形学习.mp4
┣━06.经典机器学习模型.mp4
┣━05.经典机器学习模型.mp4
┣━08.线性模型.mp4
┣━14.统计学习.mp4
┣━资料
┣━RandomForest.zip
┣━Note_15_GeoIntMaxMargin.pdf
┣━probability ( MIT Bertsekas)(1).pdf
┣━Logistic Regression.zip
┣━Note_3_LNorm.pdf
┣━第五课_代码.zip
┣━4、机器学习的数学基础.pdf
┣━7、经典机器学习模型.pdf
┣━lle.pdf
┣━6、经典机器学习模型.pdf
┣━Note_13_MaxMargin.pdf
┣━1、机器学习的数学基础.pdf
┣━7.2、Guo-PRICAI.pdf
┣━Note_16_ EM.pdf
┣━Note11_Lagrange.pdf
┣━11、核方法.pdf
┣━Note_7_EnsembleLearning.pdf
┣━probability ( MIT Bertsekas).pdf
┣━Note_17_Locally Linear Embedding.pdf
┣━Note_2_Geometric Interpretation of Determinant.pdf
┣━12、统计学习.pdf
┣━16、无监督学习.pdf
┣━3、机器学习的哲学.pdf
┣━Note_1_MachineLearningIntro.pdf
┣━Note_5_NaiveBayes.pdf
┣━Note_4-GradientDescent.pdf
┣━10、核方法.pdf
┣━5、经典机器学习模型.pdf
┣━Note12_Lagrange2.pdf
┣━2、机器学习的数学基础.pdf
┣━Note_9_OLS.pdf
┣━8、线性模型.pdf
┣━Note_14_Kernel.pdf
人工智能全新升级版-小象学院
侵权联系与免责声明 1、本站资源所有内容均收集于网络,与本网站立场无关 2、本站所有资源收集于互联网,由用户分享,该帖子作者与老马学社网站不享有任何版权,如有侵权请联系本站删除 3、本站部分内容转载自其它网站,但并不代表本站赞同其观点和对其真实性负责 4、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意 侵权联系邮箱:648765304@qq.com 本文链接:https://laomastudy.cn/8512.html。
评论0